Telegram Group & Telegram Channel
🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/proglib_academy/2772
Create:
Last Update:

🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст

BY Proglib.academy | IT-курсы


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/proglib_academy/2772

View MORE
Open in Telegram


Proglib academy | IT курсы Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Proglib academy | IT курсы from us


Telegram Proglib.academy | IT-курсы
FROM USA